楼上说的对的,编译时是不分配内存的。此时只是根据声明时的类型进行占位,到以后程序执行时分配内存才会正确。所以声明是给编译器看的,聪明的编译器能根据声明帮你识别错误。
运行时分配内存 ---------------
这是对的,运行时程序是必须调到“内存”的。因为CPU(其中有多个寄存器)只与内存打交道的。程序在进入实际内存之前要首先分配物理内存。
编译过程 --------------
只能简单说一下,因为如果要详细的话,就是一本书了《编译原理》。编译器能够识别语法,数据类型等等。然后逐行逐句检查编译成二进制数据的obj文件,然后再由链接程序将其链接成一个EXE文件。此时的程序是以EXE文件的形式存放在磁盘上。
运行过程 --------------
当执行这个EXE文件以后,此程序就被加载到内存中,成为进程。此时一开始程序会初始化一些全局对象,然后找到入口函数(main()或者WinMain()),就开始按程序的执行语句开始执行。此时需要的内存只能在程序的堆上进行动态增加/释放了。
--http://zhidao.baidu.com/question/41868474.html?fr=qrl&cid=866&index=1&fr2=query
编译其实只是一个扫描过程,进行词法语法检查,代码优化而已,编译程序越好,程序运行的时候越高效。 我想你说的“编译时分配内存”是指“编译时赋初值”,它只是形成一个文本,检查无错误,并没有分配内存空间。 当你运行时,系统才把程序导入内存。一个进程(即运行中的程序)在主要包括以下五个分区: 栈、堆、bss、data、code 代码(编译后的二进制代码)放在code区,代码中生成的各种变量、常量按不同类型分别存放在其它四个区。系统依照代码顺序执行,然后依照代码方案改变或调用数据,这就是一个程序的运行过程。
--http://zhidao.baidu.com/question/41868474.html?fr=qrl&cid=866&index=1&fr2=query
我对于C++动态绑定的理解,一句话,就是编译器用静态分析的方法加上虚拟函数的设计实现在程序运行时动态 智能执行正确虚拟函数的技术。因此要彻底理解动态绑定技术,只需要掌握两点,一是编译器的静态编译过程,二是 虚拟函数的基本知识。只要有了这两点理解,任何动态绑定的分析都是很容易的。 下面就以例子代码说明:
#include
using namespace std;
class A
...{
public:
void fA() ...{ cout << "A::fA()" << endl; }
virtual void vfA() ...{ cout << "A::vfA()" << endl; }
void emptyB() ...{ cout << "A::emptyB()" << endl; }
void vfAonly() ...{ cout << "A::vfAonly()" << endl; }
};
class B : public A
...{
public:
void fB() ...{ cout << "B::fB()" << endl; }
virtual void vfA() ...{ cout << "B::vfA()" << endl; }
virtual void vfB() ...{ cout << "B::vfB()" << endl; }
void emptyA() ...{ cout << "B::emptyA()" << endl; }
virtual void vfAonly() ...{ cout << "B::vfAonly()" << endl; }
};
int main()
...{
A* p = new B;
B& r = *(B*)p;
p->fA(); // 1
//p->fB(); // 2
p->vfA(); // 3
//p->vfB(); // 4
//p->emptyA(); // 5
p->emptyB(); // 6
p->vfAonly(); // 7
cout << endl;
r.fA(); // 8
r.fB(); // 9
r.vfA(); // 10
r.vfB(); // 11
r.emptyA(); // 12
r.emptyB(); // 13
r.vfAonly(); // 14
delete p;
return 0;
}
输出结果:
A::fA()
B::vfA()
A::emptyB()
A::vfAonly()
A::fA()
B::fB()
B::vfA()
B::vfB()
B::emptyA()
A::emptyB()
B::vfAonly()
分析: 我们通过模拟编译器的编译过程来进行解释。只看编译器是怎么编译带有标号的那些函数调用的行的。 行1. 在编译器眼中,p就是一个纯粹的A类指针,跟他指向的B类对象没有任何联系。因此,当看到 p->fA()时,编译器便去A的定义中寻找fA,找到了,于是生成调用代码。 行2. 这行如果不被注释,编译器去A的定义中寻找定义fB,但是找不到这个名字,便会输出错误信息。 行3. 编译器继续去A定义中寻找vfA,这次找到了,而且发现关键字virtual,于是,采用虚拟函数调用 代码生成技术,根据vfA的偏移值,生成代码调用虚拟函数表中该偏移值指向的函数。特别指出的 是,在静态编译期间,编译器只知道偏移值,并不知道运行时该偏移到底指向什么函数。实际效果 是,因为运行时,p指向的是B对象,因此调用的是B的虚拟函数vfA(). 行4. 这行如果不被注释,编译器去A的定义中寻找名字vfB,找不到,出错。记住第一条原则,编译器 是静态编译,不知道p和类B有联系。 行5. 同4,找不到名字emptyA。 行6. 简单,找到名字emptyB. 行7. 简单,找到名字vfAonly。 行8. 从这里开始,函数由B类引用r调用。在编译器眼中,r就是一个纯粹的B类引用,他不假设r和A有任何 关系。因此这一行,编译器去B类定义寻找名字fA。由于B继承自A,包括所有A的public函数定义, 编译器成功找到A::fA。 行9. 类似行8,找到B自身的函数定义fB。 行10. 类似行3,编译器生成代码调用虚拟函数表某偏移指向的函数。运行时该偏移指向B::vfA. 行11. 编译器生成代码调用虚拟函数表某偏移指向的函数。运行时该偏移指向B::vfB. 行12. 简单,找到名字emptyA. 行13. 简单,找到名字A::emptyB. 因为B继承自A。 行14. 编译器生成代码调用虚拟函数表某偏移指向的函数。运行时该偏移指向B::vfAonly. 为什么编译器知道 指向的是B的虚拟函数vfAonly而不是A的非虚拟函数呢?这跟另一个静态编译规则,名字隐藏,有关。 继承类的作用域中如果有基类的同名函数,继承类中的名字将隐藏基类同名函数,因此这时,编译器看 不见A::vfAonly--http://zhidao.baidu.com/question/36832319.html?si=1
所谓绑定是指,对于参与多态行为的类型,他们具有多态行为的接口是在公共基类的设计中就预先确定的。而非绑定则对于参与多态行为的类型,他们的接口没有预先定义。 在C++中通过继承实现的多态是动态绑定,通过模板实现的多态是静态绑定。动态绑定的接口是在运行期间(动态)完成的,静态绑定的接口是在编译期间(静态)完成的 --http://zhidao.baidu.com/question/16751113.html?si=5
在计算机领域,堆栈是一个不容忽视的概念,但是很多人甚至是计算机专业的人也没有明确堆栈其实是两种数据结构。
要点:
堆:顺序随意
栈:先进后出
堆和栈的区别
一、预备知识—程序的内存分配
一个由c/C++编译的程序占用的内存分为以下几个部分
1、栈区(stack)— 由编译器自动分配释放 ,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。
2、堆区(heap) — 一般由程序员分配释放, 若程序员不释放(就会造成内存泄漏的问题),程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表,呵呵。
3、全局区(静态区)(static)—,全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域(data), 未初始化的全局变量和未初始化的静态变量在相邻的另一块区域(BSS,Block Started by Symbol)。 - 程序结束后有系统释放(在整个程序的执行过程中都是有效的)
4、文字常量区 —常量字符串就是放在这里的。 程序结束后由系统释放 (文字常量区内的数据可以修改吗?)
5、程序代码区(code)—存放函数体的二进制代码。
二、例子程序
这是一个前辈写的,非常详细
//main.cpp
int a = 0; 全局初始化区
char *p1; 全局未初始化区
main()
{
int b; 栈
char s[] = "abc"; 栈 //abc是在栈里面,而下面的123456\0却在在常量区内,要注意这两种情况的区别
char *p2; 栈
char *p3 = "123456"; 123456\0在常量区,p3在栈上。
static int c =0; 全局(静态)初始化区
p1 = (char *)malloc(10);
p2 = (char *)malloc(20);
分配得来得10和20字节的区域就在堆区。
strcpy(p1, "123456"); 123456\0放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。 (所谓的优化是什么意思,是指P1和P2指向的是同一块内存吗?)
}
二、堆和栈的理论知识
2.1申请方式
stack:
由系统自动分配。 例如,声明在函数中一个局部变量 int b; 系统自动在栈中为b开辟空间
heap:
需要程序员自己申请,并指明大小,在c中malloc函数
如p1 = (char *)malloc(10);
在C++中用new运算符
如p2 = (char *)malloc(10);
但是注意p1、p2本身是在栈中的。
2.2 申请后系统的响应
栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。
堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,
会 遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内 存空间中的首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大 小,系统会自动的将多余的那部分重新放入空闲链表中。
2.3申请大小的限制
栈:在Windows下,栈是向低地址扩展的数 据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在 WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因 此,能从栈获得的空间较小。
堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。
2.4申请效率的比较:
栈由系统自动分配,速度较快。但程序员是无法控制的。
堆是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便.
另外,在WINDOWS下,最好的方式是用VirtualAlloc分配内存,他不是在堆,也不是在栈是直接在进程的地址空间中保留一快内存,虽然用起来最不方便。但是速度快,也最灵活
2.5堆和栈中的存储内容
栈: 在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由 右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。 当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。
堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。
2.6存取效率的比较
char s1[] = "aaaaaaaaaaaaaaa";
char *s2 = "bbbbbbbbbbbbbbbbb";
aaaaaaaaaaa是在运行时刻赋值的;
而bbbbbbbbbbb是在编译时就确定的;
但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。
比如:
#include
void main()
{
char a = 1;
char c[] = "1234567890";
char *p ="1234567890";
a = c[1];
a = p[1];
return;
}
对应的汇编代码
10: a = c[1];
00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]
0040106A 88 4D FC mov byte ptr [ebp-4],cl
11: a = p[1];
0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]
00401070 8A 42 01 mov al,byte ptr [edx+1]
00401073 88 45 FC mov byte ptr [ebp-4],al
第一种在读取时直接就把字符串中的元素读到寄存器cl中,而第二种则要先把指针值读到edx中,在根据edx读取字符,显然慢了。
2.7小结:
堆和栈的区别可以用如下的比喻来看出:
使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗
菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。
使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。
堆和栈的区别主要分:
操作系统方面的堆和栈,如上面说的那些,不多说了。
还有就是数据结构方面的堆和栈,这些都是不同的概念。这里的堆实际上指的就是(满足堆性质的)优先队列的一种数据结构,第1个元素有最高的优先权;栈实际上就是满足先进后出的性质的数学或数据结构。
虽然堆栈,堆栈的说法是连起来叫,但是他们还是有很大区别的,连着叫只是由于历史的原因。
----http://blog.csdn.net/yulaotou/archive/2009/09/21/4577879.aspx